
Remote Visualisation of 3D Astronomical Data
Honours Literature Review

MIVHAELA VAN ZYL VZYMIC015, Department of Computer Science, University of Cape Town, South Africa

Astronomical data presents certain challenges that affect the approaches
we take when developing a system that can visualise the data [8]. Firstly,
there is not a single dominant format which means attempting to make a
generic system would be difficult, a single format must be selected to base
the system on. There is also the aspect that astronomical data has a low
signal to noise ratio as well as a high dynamic range. It becomes difficult to
separate the data from the noise and to normalise the data to within a range
that can be visualised. Astronomical data uses dimensions in a different way
to typical two and three dimensional spatial datasets, and maps different
data types to axes. Correctly mapping these axes is imperative to accurately
visualising the data. Possibly the greatest challenge is the size of the data that
is produced by astronomy recording instruments. High resolution data often
contains millions of data points and could easily take up the entire storage
space of several hundred home computers. This review explores methods
for designing systems that can process the data, render the visualisation,
and have the visualisation be interactive.

Systems attempting to addressed this problem have been proposed and
developed for example SlicerAstro [16], iDaVIE-v [11], Frelled [17], Fips [9]
and others that touch on real time visualisation [15] [6] [8] [13].

The remote visualisation of three dimensional astronomy data has many
parts that require careful consideration taking into account the nature and
challenges presented by astronomical data especially the size of it. Starting
from preprocessing the data so that it is sufficiently minified so that it can
be rendered effectively and as fast as possible while maintaining as much
detail as possible. Then transferring the rendering over a network like the
internet, has to take into account the latency of transferring the data and
how the data will be received by the client. While presenting this data to the
user in a manner where they can intuitively interact with and manipulate it
to extract knowledge from the dataset.

1 INTRODUCTION

1.1 Background
The astronomy field conducts their research by observing the visible
universe and collects data through telescopes and satellites. These
data collection methods generate extremely large amounts amounts
of data. Scientists wanting to study the data need to interact with and
explore the collected data which is done through the visualisation
of the different parameters contained within the data. Through the
interaction and manipulation of the data scientists are able to make
discoveries and gain insights into our universe.

1.2 Motivation
There is a need within the astronomy community for a system that
can reliably produce and accurately portray data while accommo-
dating the complexities associated with processing and rendering
astronomical data.

The main portion of the data’s processing and visualisation would
be done by a remote system which would give a wider range of peo-
ple access to the data regardless of the computational power of their
local systems. It also reduces the need to transfer the data between
local systems and would remove obstacles from the scientists path
in being able to interact with the data and study it effectively.

1.3 Overview
This review explores concepts in preprocessing, rendering, visuali-
sation and interaction in the context of their application to remote
visualisation of three dimensional astronomical data.

Section 2 discusses the different ways in which three dimensional
data can be visualised and how they perform when representing
astronomical data.
Section 3 explores the different preprocessing techniques for

minifying and grouping data to reduce the computational overhead
during rendering.
Section 4 discusses the different methods in which to render a

three dimensional model and how these models can be rendered in
real time as well as remotely.
Section 5 discusses methods for interaction with the produced

visualisation.

2 DATA VISUALISATION
Data needs to be visualised in order for it to be interacted with in an
intuitive way. There are a multitude of ways in which to represent
and render volume data. Similar techniques for data visualisation
for astronomy are used in the visualisation of medical volume data
because both fields have to contend with how to represent large
amounts of data [5] [10]. The following subsections will elaborate on
different visualisation techniques and their ability to render volume
data.

2.1 Points
Point representation of a dataset simply plots each data point as a
fixed width pixel to the picture plane. It is the most straightforward
way of representing data but it is limited by the available resolution
of the data. This technique is not very effective for astronomical
data because simply plotting the data as a three dimensional scatter
plot makes it difficult to derive meaning from the data visualisation.
For example in figure 2 the top left quadrant when compared to the
bottom right quadrant is much less semantically comprehensible.

2.2 Splats
Splat visualisation makes use of small textures that always point
towards the camera regardless of the orientation of the scene [6].
Combining splats produces an visualisation that is much like volume
rendering.

2.3 Isosurface
Polygon based or surface rendering is a technique used to represent
volume data and it functions by extracting polygons from three
dimensional data. Part of the process of modelling the data is dis-
cerning where the boundaries of the objects are and defining a skin
or boundary for the region in the data it occupies [5].
This technique does not represent astronomical data very effec-

tively as volume rendering. There are many blurred and overlapping



2 • Van Zyl

boundaries and therefore this technique does not portray a full rep-
resentation of the data because of the need of binary boundaries.
It is less effective at giving a global view of the data than volume
rendering [6].

2.4 Volume Rendering
Volume rendering represents three dimensional data as voxels which
can be translated from data points in the dataset and projects them
into the picture plane [5] and does not directly deal with surfaces
[12]. The colour and opacity is computed for each voxel and classifies
them in terms of what proportion they are of each object class. It
does not require the explicit classification of binary surfaces to define
the data as objects and non objects like in isosurfaces. Meaning is
added to the data through colouring the rendered points based on a
parameter of the data like temperature [1]. This rendering method
produces a model which has a semi transparent gel appearance and
is suited for displaying weak or fuzzy surfaces which is a much
better way of representing astronomical data. This gives volume
rendering the ability to render both the external surfaces and the
interior three dimensional structures 1 which would have otherwise
gone unnoticed [6] [14] [12].
However, the rendering time grows linearly with the size of the

dataset. We encounter problems when the dataset reaches a size
where the computational overhead for rendering all the voxels in
the scene becomes too great as all the voxels in the scene participate
in the rendering. It ia also difficult to add textures to the model’s
surface because a texture requires a defined surface for it to be
wrapped effectively. Volume rendering does not have the necessary
defined surface for the textures. The solution to this is to project
the textures through the space and onto the model [5].

3 DATA PREPROCESSING
When working with very large data sets that can range up to ter-
abytes in size and then given the task of rendering a three dimen-
sional model using the dataset, some visibility culling has to take
place where large parts of the scene are rejected before the vis-
ible surfaces are determined to reduce the rendering complexity
[4]. Voxel scenes are composed of a cubical grid of three dimen-
sional pixels (voxels), each voxel is either empty or contains some
information [18].
The following subsections will discuss various preprocessing

methods which incorporate visibility culling and voxel representa-
tion.

3.1 Mipmaps
Mipmaps for two dimensional images are pre-calculated levels of
images with each subsequent image having a lower resolution than
the previous one. The resolution is decreased by a factor of two from
one level to the next. Higher resolution images are used to represent
objects that are closer to the camera and the objects decrease in
resolution as their distance from the camera is increased.
It is effective for minifying the level of detail while maintaining

image quality of a three dimensional rendering. Astronomical data
can exceed millions of data points so preprocessing the dataset so as
to not render detail that cannot be seen on the screen is a substantial

reason why this technique is considered. By preventing unnecessary
processing and rendering, it reduces computational stress on the
GPU and CPU, speeds up rendering times and requires less storage
space [3].
Mipmaps can also be used for three dimensional models where

instead of resampling a two dimensional layer the entire texture
volume is filtered down to an eighth of the original using octrees
which are discussed next section. It does this by averaging the eight
adjacent texture voxels on one level down to a single voxel on the
next. Three dimensional mipmapping has the same benefits as two
dimensional mipmapping. This approach is favourable for volume
rendering 2 of large volumes of voxels [10].

3.2 Sparse Voxel Octrees
Octrees recursively divide data up into eight smaller cubical sub-
volumes, also know as octants, up to the desired level. Sparse voxel
octrees exploit sparsity in data by omitting sections of the data from
the octree that are essentially empty spaces. These empty spaces
are not stored in memory [18].

4 RENDERING
To effectively render astronomical data attention needs to be paid to
how each rendering technique produces the model because this has
an effect on how the data cube can be visualised. The sheer size of
the models [7] [15] makes it difficult to render them in real time and
models must also be able to be transferred to the user’s local system
which adds latency. Therefore efficient rendering techniques are
required to render a usable model as fast as possible. The subsections
will discuss the different techniques for rendering three dimensional
models, how these models can be rendered in real time, and how
they can be rendered remotely.

4.1 Rasterisation
Rasterisation is currently the most widely used rendering algorithm
and is also know as object order rendering. Objects that are going
to be rendered are projected sequentially into an image plane and
then they are rasterised into pixels and shaded [4]. It has the best
effect in cases where a few triangles cover large areas of the screen
and where there are defined objects. This method would not work
well with rendering astronomical data which is comprised out of
many points and does not have explicitly defined boundaries.

4.2 Ray Tracing
Also know as image order rendering, this technique models physical
light as straight lines by shooting rays through a pixel grid into a
three dimensional scene. The algorithm then determines the ray’s
closest intersection with the model’s surface [4]. It is a more simplis-
tic technique both in theory and implementation than rasterisation,
and would be better suited for rendering volume data because the
visibility of the model must be determined in a point wise manner.

4.3 Real time volume rendering
Volume rendering of voxel scenes is computationally expensive and
makes it difficult to render large datasets in real time and have the
data be interactive [17] [16] [10].



Remote Visualisation of 3D Astronomical Data • 3

Fig. 1. Astronomical data visualised using volume rendering shows how the classification and colour coding of the individual data points uncover emergent
data structures that could otherwise not be seen [17]

Real time volume rendering makes use of a hierarchical pyra-
mid of binary volumes to make up the model. It also makes use of
adaptive sampling which was discussed in further detail in section
3.
The volumes are given rank in the hierarchy and their position

in the hierarchy determines when they will be rendered. The main
volumes that make up the bulk of the model are processed and
rendered first and the volumes that contain the detail are rendered
after. Figure 3 illustrates how the volumes are loaded and rendered
using progressive volume rendering.
The HDF5 data format is stored in a manner the same as a file

directory, it is also commonly used to store astronomy data. This
format sorts the data into a hierarchy and therefore reduces the
need for the dataset to be processed. Storing data in a hierarchical
format like HDF5 can potentially cause rendering techniques to be
effective as it can facilitate the identification of coherent regions
within the dataset.

4.3.1 Remote Rendering. Remote rendering of data cubes as op-
posed to visualisation on local system has to be put into consid-
eration due to the fact that the data easily exceeds the size of a
typical local system’s memory [15]. It would be desirable to do the
computing of the data on a remote system that has sufficient power
and capacity and would provide the wider astronomy community
with a low cost visualisation service [2] as well as reducing the
need to transfer data between systems. The user would request a
visualisation of a dataset from the remote host and the remote host
would send the visualisation to the clients computer [6]. Figure 4
outlines the algorithm for remote rendering.

Real time interaction with large datasets over the internet is
a challenge because one not only has to account for processing
time but also the latency that comes with transmitting data over the
internet. Amethod to reduce the time to render a usable visualisation
would be to send the data in a hierarchical format [13]. It is important
to note that when rendering the visualisation the order in which the
volumes are loaded affects the appearance of the final visualisation.

5 DATA INTERACTION
The visualisation of astronomical data creates a need for interaction,
interaction with the data is critical for knowledge discovery. It is
necessary to allow the user to manipulate data in a way that does
not inadvertently remove details that are of interest to the user
while also obtaining an intuitive understanding of the data as well
as quantitative results [14] [5].
The biggest challenge for interacting with astronomical data is

that the data is so large that the latency for re-rendering the model
results in the framerate dropping to a point where interacting with
the data becomes virtually impossible [16].
Frelled [17] uses the software Blender that has all the desired

characteristics for smooth and effective interaction because it is
designed to manipulate and edit detailed three dimensional models
and performs better than any current astronomical viewers. The
user can manipulate the model by enlarging or shrinking it to the
desired size as well as allowing it to be rotated on the x, y, and z axes.
It would also be desirable to include the ability to change visuali-
sation parameters and dynamic data filtering especially with radio
astronomy data that has many parameters that could be visualised



4 • Van Zyl

Fig. 2. Different visualisation techniques represent astronomical data [6] Top left: point data, top right: splats, bottom left: isosurface, bottom right: volume
rendering.

[6]. This would give the user the ability to intuitively and precisely
navigate through three dimensional data.
An example of an astronomical data viewer is iDaVIE-v [11]

which is used for data cube exploration. It makes use of the game
engine Unity to visualise the data cube and allows the user to inter-
act with the data in an intuitive manner. The use of game engine

software enables easy implementation of interaction because game
engines are designed to produce programs where interaction is a
given feature. Although, all the rendering is done on a local machine
and it uses a virtual reality headset to give the user an immersive
perspective. When implementing a similar system in a web browser



Remote Visualisation of 3D Astronomical Data • 5

Fig. 3. How progressive volume rendering processes data volumes in a hierarchical manner [13].

Fig. 4. A possible implementation of an algorithmic pipeline for client-server progressive volume rendering [13]. Stipulating which tasks are handles by the
server and which tasks are handled by the client as well as how those different tasks relate to each other.

some degree of interaction is expected and there are tools already
available to implement interaction into the client side visualisation.

6 CONCLUSION
In this paper various methods pertaining to how to approach the
problem of visualising and interacting with very large astronomi-
cal datasets within a web browser were discussed. The size of the
datasets indicates that they require a super computer to be able

to store, process and render the visualisations. Taking this into ac-
count remote rendering becomes the best option to make the data
accessible to a wider range of individuals.
Preprocessing of the data before the model is rendered is also

required for computational efficiency. The data can beminified using
the mipmap method and broken up into volumes and placed into a
hierarchical structure which ensures that the most important data is
rendered fist and the rest is loaded in a progressive manner as well as
ensuring that no unnecessary processing is done. The preprocessing
ensures that the rendering and transfer latency is reduced as much



6 • Van Zyl

as possible to ensure the client side model is usable for interaction.
Sending this data over the internet also requires it to be structured
in a hierarchical manner. Progressive volume rendering is a very
promising technique for rendering a usable model in a web browser.
Certain visualisation techniques are better suited to the nature

of astronomical data, such as volume rendering which is able to
reproduce the fuzzy cloudlike nature of astronomical structures and
can visualise different parameters of a data points.
How effectively the user can interact with the data is directly

related to how quickly the model can be rendered and re-rendering
while the user is manipulating it from the client side. If the model
cannot be rendered in a fast enough time then the framerate the user
sees drops to below a usable threshold. The model becomes unusable
because the user must wait for the model to be re-rendered after
every adjustment. This would severely hamper the user’s ability
to extract knowledge from the visualisation which is the primary
reason for the implementation of the system.

REFERENCES
[1] Bennett W. Anderson and Robert P. Burton. 1988. Computer graphics curricula: a

survey of PhD granting departments. ACM SIGGRAPH Computer Graphics 22, 2
(apr 1988), 94–98. https://doi.org/10.1145/47824.47825

[2] David G. Barnes and Christopher J. Fluke. 2008. Incorporating interactive three-
dimensional graphics in astronomy research papers. New Astronomy 13, 8 (nov
2008), 599–605. https://doi.org/10.1016/j.newast.2008.03.008 arXiv:0709.2734

[3] Bas Dado, Timothy R. Kol, Pablo Bauszat, Jean-Marc Thiery, and Elmar Eisemann.
2016. Geometry and Attribute Compression for Voxel Scenes. Computer Graphics
Forum 35, 2 (may 2016), 397–407. https://doi.org/10.1111/cgf.12841

[4] Andreas Dietrich, Enrico Gobbetti, and Sung-eui Yoon. 2007. Massive-Model
Rendering Techniques: A Tutorial. IEEE Computer Graphics and Applications 27, 6
(nov 2007), 20–34. https://doi.org/10.1109/MCG.2007.154

[5] H. Fuchs, M. Levoy, and S.M. Pizer. 1989. Interactive visualization of 3D medical
data. Computer 22, 8 (aug 1989), 46–51. https://doi.org/10.1109/2.35199

[6] Amr Hassan and Christopher J. Fluke. 2011. Scientific visualization in astronomy:
Towards the petascale astronomy era. Publications of the Astronomical Society of
Australia 28, 2 (2011), 150–170. https://doi.org/10.1071/AS10031 arXiv:1102.5123

[7] A. H. Hassan, C. J. Fluke, and D. G. Barnes. 2010. Interactive Visualization of
the Largest Radioastronomy Cubes. New Astronomy 16, 2 (jul 2010), 100–109.
https://doi.org/10.1016/j.newast.2010.07.009 arXiv:1008.0135

[8] Thomas H. Jarrett, A. Comrie, L. Marchetti, A. Sivitilli, S. Macfarlane, F. Vitello, U.
Becciani, A. R. Taylor, J. M. van der Hulst, P. Serra, Neal Katz, and M. E. Cluver.
2020. Exploring and interrogating astrophysical data in virtual reality. arXiv
(2020). arXiv:2012.10342

[9] Matwey Kornilov and Konstantin Malanchev. 2020. Fips: An OpenGL based FITS
viewer. In Journal of Physics: Conference Series, Vol. 1525. Institute of Physics
Publishing. https://doi.org/10.1088/1742-6596/1525/1/012047

[10] Koojoo Kwon, Eun-Seok Lee, and Byeong-Seok Shin. 2013. GPU-accelerated
3D mipmap for real-time visualization of ultrasound volume data. Computers
in Biology and Medicine 43, 10 (oct 2013), 1382–1389. https://doi.org/10.1016/j.
compbiomed.2013.07.014

[11] Lucia Marchetti, Thomas H. Jarrett, Angus Comrie, Alexander K. Sivitilli, Fabio
Vitello, Ugo Becciani, and A. R. Taylor. 2020. iDaVIE-v: Immersive data vi-
sualisation interactive explorer for volumetric rendering. arXiv (2020), 1–4.
arXiv:2012.11553

[12] M Meißner, Hanspeter Pfister, R Westermann, and Craig Wittenbrink. 2000. Vol-
ume visualization and volume rendering techniques. (01 2000).

[13] Finian Mwalongo, Michael Krone, Guido Reina, and Thomas Ertl. 2018. Web-based
volume rendering using progressive importance-based data transfer. Vision, Mod-
eling and Visualization, VMV 2018 (2018). https://doi.org/10.2312/vmv.20181264

[14] Ray P. Norris. 1994. The Challenge of Astronomical Visualisation. In Astronom-
ical Data Analysis Software and Systems III (Astronomical Society of the Pacific
Conference Series, Vol. 61), D. R. Crabtree, R. J. Hanisch, and J. Barnes (Eds.). 51.

[15] Simon Perkins, Jacques Questiaux, Stephen Finniss, Robin Tyler, Sarah Blyth,
and Michelle M. Kuttel. 2014. Scalable desktop visualisation of very large radio
astronomy data cubes. New Astronomy 30 (jul 2014), 1–7. https://doi.org/10.1016/
j.newast.2013.12.007

[16] D. Punzo, J. M. van der Hulst, J. B.T.M. Roerdink, J. C. Fillion-Robin, and L. Yu.
2017. SlicerAstro: A 3-D interactive visual analytics tool for HI data. Astronomy
and Computing 19 (2017), 45–59. https://doi.org/10.1016/j.ascom.2017.03.004

arXiv:1703.06651
[17] R. Taylor. 2015. Frelled: A realtime volumetric data viewer for astronomers.

Astronomy and Computing 13 (2015), 67–79. https://doi.org/10.1016/j.ascom.2015.
10.002 arXiv:1510.03589

[18] Remi van der Laan, Leonardo Scandolo, and Elmar Eisemann. 2020. Lossy Ge-
ometry Compression for High Resolution Voxel Scenes. Proceedings of the
ACM on Computer Graphics and Interactive Techniques 3, 1 (apr 2020), 1–13.
https://doi.org/10.1145/3384541

https://doi.org/10.1145/47824.47825
https://doi.org/10.1016/j.newast.2008.03.008
https://arxiv.org/abs/0709.2734
https://doi.org/10.1111/cgf.12841
https://doi.org/10.1109/MCG.2007.154
https://doi.org/10.1109/2.35199
https://doi.org/10.1071/AS10031
https://arxiv.org/abs/1102.5123
https://doi.org/10.1016/j.newast.2010.07.009
https://arxiv.org/abs/1008.0135
https://arxiv.org/abs/2012.10342
https://doi.org/10.1088/1742-6596/1525/1/012047
https://doi.org/10.1016/j.compbiomed.2013.07.014
https://doi.org/10.1016/j.compbiomed.2013.07.014
https://arxiv.org/abs/2012.11553
https://doi.org/10.2312/vmv.20181264
https://doi.org/10.1016/j.newast.2013.12.007
https://doi.org/10.1016/j.newast.2013.12.007
https://doi.org/10.1016/j.ascom.2017.03.004
https://arxiv.org/abs/1703.06651
https://doi.org/10.1016/j.ascom.2015.10.002
https://doi.org/10.1016/j.ascom.2015.10.002
https://arxiv.org/abs/1510.03589
https://doi.org/10.1145/3384541

	Abstract
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Overview

	2 Data Visualisation
	2.1 Points
	2.2 Splats
	2.3 Isosurface
	2.4 Volume Rendering

	3 Data Preprocessing
	3.1 Mipmaps
	3.2 Sparse Voxel Octrees

	4 Rendering
	4.1 Rasterisation
	4.2 Ray Tracing
	4.3 Real time volume rendering

	5 Data Interaction
	6 Conclusion
	References

